Assistant professor
Department of Psychiatry and Neuroscience
Faculty of Medicine

Mathieu Flamand is an assistant professor in the Department of Psychiatry and Neuroscience in the Faculty of Medicine at Université Laval. He obtained his PhD in Biochemistry from McGill University in 2017, where he studied the mechanistic basis of gene regulation by microRNAs and RNA-binding proteins (RBPs). Then, he joined Kate Meyer’s group (Department of Biochemistry, Duke University School of Medicine, USA), where his work aimed at understanding the role of RNA modifications in neuronal function.

Notably, his research revealed a new role for N6-methyladenosine (m6A), the most abundant mRNA modification, in promoting the localization of mRNAs to the dendrites and axons of neurons, a process essential to synaptic plasticity and memory formation. Moreover, he developed novel genomic tools to study binding events of multiple RBPs in cells. In 2023, he joined the Neuroscience program at the CRCHU de Québec, where his team works on the fundamental roles of RNA-binding proteins (RBPs) and RNA modifications in synaptic plasticity and in neurodegenerative diseases.

Characterize protein-protein and protein-RNA interaction networks at synapses.

The local translation of proteins is an essential process which enables rapid changes in local protein levels and which is important for memory formation. RBPs are central players in large regulatory networks which control mRNA transport, decay, and local translation. As such, the loss and mutation of RBPs are linked to a wide range of neurological disorders. To understand the function of these proteins in synaptic plasticity and memory formation, it is crucial to characterize the interaction networks located at synapses. To this end, Mathieu Flamand’s team employs cutting-edge biochemical, proteomic, and cellular imaging techniques to characterize RBP interactions and function at synapses, using both cultured neurons and mouse models.

Understanding the disruption of m6A regulatory networks in neurodegenerative diseases.

Increasing evidence indicates that m6A and m6A-readers are essential for synaptic function. Moreover, disturbances in m6A levels are linked to neurodegenerative disorders leading to memory impairment, including amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). However, the molecular mechanisms by which they contribute to these diseases remain largely unknown. To better understand this problem, Mathieu Flamand’s team aims to understand the cooperative interactions between RBPs and the alterations to m6A regulatory networks during these diseases. For this, his group uses a combination of molecular biology and genomics tools he developed to probe the targets and regulation of RBPs in cultured neurons, iPSC, and mouse models. These approaches will identify the critical roles of the m6A pathway in ALS and AD, identify new biomarkers, and provide information on the viability of therapeutically targeting m6A.