Following her training in Paris, France, Dr. Moulin was recruited in 1998 to better understand the complex process of healing. Since 1998, she has been a professor at the Laval University School of Medicine, Department of Surgery, but also a researcher at the LOEX Center at Laval University, and at the Research Center of the CHU de Quebec. Her work focuses on the normal and pathological mechanisms of skin healing. To perform this, she uses different cell culture models reconstituted by tissue engineering to reproduce in vitro fibrotic skin diseases (hypertrophic scars, scleroderma). Concurrently, she also uses the tissue engineering method to reconstruct cutaneous substitutes to treat skin deficient patients, for example, after burns.
Myofibroblasts in normal or pathological scars
These cells appear during wound healing and play an important role in the contraction of the edges of the wound. Dr. Moulin’s team has shown that these cells also play a central role in the production of extracellular matrix, as well as in angiogenesis. They also have a role in the formation of disabling scars such as hypertrophic scars. Dr. Moulin’s team analyzes the different functions of myofibroblasts in normal or pathological scarring; investigates existing interactions between endothelial cells, keratinocytes, fibroblasts and myofibroblasts, and analyzes the role of extracellular matrix secreted by cells in various cellular functions such as apoptosis, angiogenesis or cell differentiation.
Systemic scleroderma
This pathology is a fibrotic disease that stiffens all organs, including the skin, and is eventually fatal. Dr. Moulin uses a tissue-engineering method to understand this pathology, but especially to determine new treatments to reduce fibrosis.
Clinical application of tissue engineering
Tissue engineering skin production is carried out from patients’ cells and then grafted onto them to allow wound closure in patients who are unable to heal after extensive burns or other pathologies. The properties of skin reconstructed by our method are being evaluated in a clinical trial accepted by Health Canada to cover burn victims.
R-225
Québec, Québec
Canada G1J 1Z4
- Arcand, CharlesMaster studentHôpital de l'Enfant-Jésuscharles.arcand@crchudequebec.ulaval.ca
1401, 18e rue
LOEX
Québec, QC
Canada G1J 1Z4 - Arif, SyrineDoctoral studentHôpital de l'Enfant-JésusSyrine.arif.1@ulaval.casyrine.arif@crchudequebec.ulaval.ca
1401 18 ième Rue
Local R229
Quebec, QC
Canada G1J 1Z4 - Arif, SyrineEmployeeHôpital de l'Enfant-JésusSyrine.arif.1@ulaval.casyrine.arif@crchudequebec.ulaval.ca
1401 18 ième Rue
Local R229
Quebec, QC
Canada G1J 1Z4 - Attia, AbirEmployeeHôpital de l'Enfant-Jésusabir.attia@crchudequebec.ulaval.ca
1401, 18e rue
Québec, QC
Canada G1J 1Z4 - Attiogbe, ÉmilieDoctoral studentemilie.attiogbe@crchudequebec.ulaval.ca
- Barbier, MartinEmployeemartin.barbier@crchudequebec.ulaval.ca
- Bernard, GenevièveEmployeeHôpital de l'Enfant-Jésus+1 418-990-8248+1 418-990-8255, extension 61679Genevieve.Bernard@crchudequebec.ulaval.ca
1401, 18e Rue
Québec, Québec
Canada G1J 1Z4 - Bossé, LouiseEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444louise.bosse@crchudequebec.ulaval.ca
1401, 18e rue
Québec, QC
Canada G1J 1Z4 - Cattier, BettinaEmployeebettina.cattier@crchudequebec.ulaval.ca
- Caya, RachelMaster studentrachel.caya.1@ulaval.carachel.caya@crchudequebec.ulaval.ca
- Dagher, JasonMaster studentjason.dagher@crchudequebec.ulaval.ca
- Demers, AnabelleEmployeeHôpital de l'Enfant-Jésusanabelle.demers@crchudequebec.ulaval.caAnabelle.Demers@USherbrooke.ca
1401 18e Rue
R-107
Québec, QC
Canada G1J 1Z4 - Djite, ElHadji Mouhamadou SakhirEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444elhadji-mouhomadou-sakhir.djite@crchudequebec.ulaval.ca
1401, 18e rue
Québec, QC
Canada G1J 1Z4 - Fauvel, ChantalEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444, extension 61679chantal.fauvel@crchudequebec.ulaval.ca
1401, 18e Rue
R-118
Québec, Québec
Canada G1J 1Z4 - Ferland, KarelEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444, extension 61680karel.ferland@crchudequebec.ulaval.ca
1401 18e Rue
R-119, LOEX/ CMDGT
Québec, QC
Canada G1J 1Z4 - Germain, VéroniqueEmployeeHôpital de l'Enfant-Jésusveronique.germain@crchudequebec.ulaval.ca
1401 18e Rue
Québec, QC
Canada G1J 1Z4 - Hayward de Mendoza, Cindy JeanEmployeeHôpital de l'Enfant-Jésus+1 418-990-8248Cindy.Hayward@crchudequebec.ulaval.ca
1401, 18e Rue
Québec, Québec
Canada G1J 1Z4 - Labrecque, ManonEmployeeHôpital de l'Enfant-Jésus+1 418-990-8255, extension 61661Manon.Labrecque@crchudequebec.ulaval.ca
1401, 18e Rue
R-121
Québec, Québec
Canada G1J 1Z4 - Laroche, Marie-ÈveEmployeemarie-eve.laroche@crchudequebec.ulaval.ca
- Larochelle, SébastienEmployeeHôpital de l'Enfant-Jésus+1 418-990-8248+1 418-990-8255, extension 61679Sebastien.Larochelle@crchudequebec.ulaval.ca
1401, 18e Rue
R-118
Québec, Québec
Canada G1J 1Z4 - Lavoie-Pelletier, Marie-HélèneEmployeemarie-helene.lavoie-pelletier@crchudequebec.ulaval.ca
- Mareux, ÉlodiePostdoctoral fellowelodie.mareux@crchudequebec.ulaval.ca
- Paim, Thais CasagrandeInternthais-casagrande.paim@crchudequebec.ulaval.ca
- Pépin, RémyEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444, extension 61704+1 418-691-5439remy.pepin.1@ulaval.caremy.pepin@crchudequebec.ulaval.caremy.pepin@usherbrooke.ca
1401 18 ième Rue
R-203
Québec, QC
Canada G1J 1Z4 - Pfau, FriederikeEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444, extension 61685+1 418-990-8248Friederike.Pfau@crchudequebec.ulaval.ca
1401, 18e Rue
LOEX / CMDGT
R-125
Québec, Québec
Canada G1J 1Z4 - Roy, CassandraInterncassandra.roy.6@ulaval.ca
- Thibodeau, AlexaneEmployeeHôpital de l'Enfant-Jésus+1 418-525-4444, extension 61673alexane.thibodeau.1@ulaval.caalexane.thibodeau@crchudequebec.ulaval.ca
1401 18 ième Rue
R-112
Québec, QC
Canada G1J 1Z4 - Tremblay, AndréaEmployeeandrea.tremblay@crchudequebec.ulaval.ca
Shedding of proangiogenic microvesicles from hypertrophic scar myofibroblasts
Journal ArticleExp Dermatol, 30 (1), 2021.
Surviving an Extensive Burn Injury Using Advanced Skin Replacement Technologies
Journal ArticleJ Burn Care Res, 42 (6), 2021.
Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors
Journal ArticleBiomed Res Int, 2020 , 2020.
Apple Extract ( sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin
Journal ArticleRejuvenation Res, 23 (6), 2020.
PLGF-1 contained in normal wound myofibroblast-derived microvesicles stimulated collagen production by dermal fibroblasts
Journal ArticleJ Cell Commun Signal, 14 (4), 2020.
α-2-Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts
Journal ArticleJ Cell Physiol, 234 (7), 2019.
Isolation and Culture of Human Dermal Microvascular Endothelial Cells
Journal ArticleMethods Mol Biol, 1993 , 2019.
Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: a case series of 14 severely burned patients indicating clinical effectiveness
Journal ArticleEur Cell Mater, 36 , 2018.
The role of microvesicles in cutaneous wound healing
Book ChapterTurksen K (Ed.): Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, pp. 43-66, Hoboken, NJ, John Wiley & Sons, Inc, 2018, ISBN: 9781119282488.
Translating the combination of gene therapy and tissue engineering for treating recessive dystrophic epidermolysis bullosa
Journal ArticleEur Cell Mater, 35 , 2018.
Active projects
- Action des microvésicules dans les tissus solides, from 2019-04-01 to 2025-03-31
- Allogeneic dermis to accelerate the production of a tissue-engineered skin substitute to treat Canadian burn patients, from 2023-04-01 to 2025-01-31
- Combining tissue-engineered skin with ex vivo gene therapy correction to develop a treatment for epidermolysis bullosa, from 2022-04-01 to 2024-03-31
- Cryo-TEM infrastructure for the visualisation of nanoparticles, exosomes and virus-like particles, from 2023-04-01 to 2024-03-31
- Mise au point par génie tissulaire d'un modèle de cicatrisation cutanée contenant des cellules immunitaires, from 2019-01-27 to 2024-02-29
- Real World Clinical and Economic Burden of Severe Burn Injuries, from 2023-10-01 to 2026-09-30
- Setting up the conditions for the biobanking of tissues and cells from hypertrophic scars, from 2022-12-01 to 2024-02-28
- The implication of PlGF in cutaneous fibrosis, from 2022-10-01 to 2027-09-30
- Tissue engineering to treat Canadian burn patients: the Self-Assembled Skin Substitutes (SASS), from 2022-04-01 to 2025-03-31
Recently finished projects
- Bioengineering and Long-term Storage of Complex Tissue and Organ Constructs, from 2020-03-31 to 2023-03-30
- Centre du génie tissulaire (CHU de Québec - Université Laval), from 2019-04-01 to 2023-03-31
- La réponse immunitaire aux peaux reconstruites avec des cellules allogéniques., from 2022-04-01 to 2023-03-31
- Self-Assembly Skin Substitutes (SASS) for the treatment of acute wounds of Canadian burn patients, from 2020-01-01 to 2023-01-31
- The Canadian National Transplant Research Program : Increasing Donation and Improving Transplantation Outcomes, from 2013-04-01 to 2022-03-31
- The implication of PlGF in cutaneous fibrosis, from 2022-03-01 to 2023-02-28
- Utilisation de vésicules extracellulaires pour livrer les composants de la technologie d’édition du génome CRISPR/PRIME, from 2021-04-01 to 2022-03-31