A pharmacist by training, Dr. Nicolas Bertrand is an assistant professor at Laval University’s School of Pharmaceutical Studies. He is also a researcher in the department of Endocrinology and Nephrology at the CHU de Quebec Research Center. His research in nanomedicine focuses on potentiating the efficacy of therapeutic molecules by using nanotechnologies. He is the editor of the European Journal of Pharmaceutics and Biopharmaceutics (Elsevier, IF: 4.2) and director of the « Biopharmacy et pharmacometrics » strategic cluster of the Réseau Québécois de Recherche sur les Médicaments (rqrm.ca). He is an associate member of the Institute on Nutraceuticals and Functional Foods (INAF) and of the Centre de Recherche sur les Matériaux Avancés (CERMA).

Encapsulating bioactive molecules through differentiated technologies

Many drugs in development, or already on the market, possess suboptimal physiochemical or pharmacological characteristics. Nanomedicine can harness the unique features of nanomaterials to facilitate the administration of these drugs, or potentiate their efficacy. Encapsulation of bioactive molecules in nanoparticles can prevent their metabolism, ameliorate their pharmacokinetics, or ensure their optimal distribution to diseased tissues. Altogether, these effects can pave the way for more efficient and better tolerated drugs.

Dr. Nicolas Bertrand’s laboratory uses functional polymers and lipids to encapsulate a variety of bioactive molecules in clinically-relevant drug delivery vehicles.

Elucidate the interactions of nanomaterials with the immune system

Like other drugs, the use of nanoparticles as drug delivery vehicles can trigger unexpected or undesirable reactions. The type of system, its size, or the materials used in its preparation can all influence the nature and extent of its interactions with the immune system. The development of better tolerated nanomedicines necessitates a better understanding of how drug delivery platforms interact with the various components of the immune system.

Through a unique expertise in the preparation of nanoparticle libraries, combined with an established knowledge in preclinical pharmacokinetics, Dr. Nicolas Bertrand’s laboratory specialises in studying the fate of nano- and biomaterials in living animals. This approach leads to an integrated understanding of the interactions of materials with complete, functional biological systems.

CHUL
2705, boulevard Laurier
T4-13
Québec, Québec
Canada G1V 4G2
47 entries « 3 of 5 »

Ouellette M, Masse F, Lefebvre-Demers M, Maestracci Q, Grenier P, Millar R, Bertrand N, Prieto M, Boisselier E

Insights into gold nanoparticles as a mucoadhesive system

Journal Article

Sci Rep, 8 (1), 2018.

Abstract | Links:

Grenier P, Viana IMO, Lima EM, Bertrand N

Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo

Journal Article

J Control Release, 287 , 2018.

Abstract | Links:

Bisso PW, Tai M, Katepalli H, Bertrand N, Blankschtein D, Langer R

Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format

Journal Article

Nano Lett, 18 (1), 2018.

Abstract | Links:

Maltais R, Trottier A, Roy J, Ayan D, Bertrand N, Poirier D

Pharmacokinetic profile of PBRM in rodents, a first selective covalent inhibitor of 17β-HSD1 for breast cancer and endometriosis treatments

Journal Article

J Steroid Biochem Mol Biol, 178 , 2018.

Abstract | Links:

Chapeau AL, Bertrand N, Briard-Bion V, Ramon P, Poncelet D, Bouhallab S

Coacervates of whey proteins to protect and improve the oral delivery of a bioactive molecule

Journal Article

J Funct Foods, 38 , 2017.

| Links:

Bertrand N, Simard P, Leroux JC

Serum-Stable, Long-Circulating, pH-Sensitive PEGylated Liposomes

Journal Article

Methods Mol Biol, 1522 , 2017.

Abstract | Links:

Chopra S, Bertrand N, Lim JM, Wang A, Farokhzad OC, Karnik R

Design of Insulin-Loaded Nanoparticles Enabled by Multistep Control of Nanoprecipitation and Zinc Chelation

Journal Article

ACS Appl Mater Interfaces, 9 (13), 2017.

Abstract | Links:

Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, Lim JM, Karnik R, Langer R, Farokhzad OC

Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics

Journal Article

Nat Commun, 8 (1), 2017.

Abstract | Links:

Mahmoudi M, Bertrand N, Zope H, Farokhzada OC

Emerging understanding of the protein corona at the nano-bio interfaces

Journal Article

Nano Today, 11 (6), 2016.

| Links:

Brandl F, Bertrand N, Lima EM, Langer R

Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

Journal Article

Nat Commun, 6 , 2015.

Abstract | Links:

47 entries « 3 of 5 »
Signaler des ajouts ou des modifications

Active projects

  • Causes and consequences of anti-PEG antibodies, from 2023-10-01 to 2028-09-30
  • Development, optimization and evaluation of novel nanoparticle formulations for extra-hepatic targeted gene therapy, from 2022-12-05 to 2024-12-04
  • Have mRNA vaccines changed the biopharmacy of drugs? A pilot correlative study on the links between vaccination with mRNA vaccines and the incidence of acute infusion reactions in women with breast and ovarian cancer treated with, from 2023-04-01 to 2025-03-31
  • Methods to study the long-term effects of nanoparticles in vivo, from 2023-04-01 to 2028-03-31
  • Nanomatériaux pour cibler le microbiote intestinal et altérer le métabolisme des acides biliaires, from 2023-04-01 to 2026-03-31
  • Nanopharmacologie et nanosciences pharmaceutiques : une approche multidisciplinaire pour des nanomédecines plus efficaces et mieux tolérées, from 2022-07-01 to 2026-06-30
  • NanoQB : réseau Québec-Brésil pour la recherche collaborative en nanotechnologie pharmaceutique, from 2023-07-21 to 2025-06-30
  • Pharmacological optimization of OpKemo, a silica-based nanoparticle platform for oncology, from 2022-01-31 to 2024-12-31
  • Plateforme d'évaluation de la biopharmacie des nanomédicaments, from 2024-07-30 to 2025-07-31

Recently finished projects

  • Adaptation de la méthode SERP (size exclusion of radioactive polymers) aux nanovecteurs de silice , from 2021-12-17 to 2024-03-31
  • Anti-PEG antibodies and adverse reactions to PEGylated drugs: effect of mRNA vaccination and novel mitigation strategies., from 2022-09-01 to 2024-08-31
  • Causes and consequences of anti-PEG antibodies, from 2023-03-01 to 2024-02-29
  • Development of siRNA-based nanomedicines for the treatment of cholestatic autoimmune liver diseases, from 2022-09-21 to 2023-03-31
  • Engineering functional nanoparticles using libraries of polymers, from 2016-04-01 to 2023-03-31
  • FGR - Projet MAKISU ; de l'impression 3D au médicament injectable, from 2022-02-15 to 2023-02-14
  • Infrastructure de développement de nanomédecines pour le traitement des maladies du foie cholestatiques et autoimmunes, from 2023-05-01 to 2024-08-27
  • Plate-forme de production de nanoparticules lipidiques pour le développement de thérapies à base d'acides nucléiques, from 2022-03-22 to 2023-09-28
  • Targeting extracellular hydroxyapatite to deliver nucleic acids to surrounding cells, from 2022-09-21 to 2023-03-31
  • Un nano-vaccin contre les maladies cardiovasculaires, from 2020-04-01 to 2024-03-31
  • Use of nanoparticles to understand and treat vascular calcification in chronic kidney disease, from 2020-10-01 to 2023-05-31
Data provided by the Université Laval research projects registery