Holder of a PhD in Cellular and Molecular Biology, Dr. Josée N. Lavoie is a regular researcher at the CHU Research Centre of Quebec-Laval University, oncology axis, and Professor in the Department of Molecular Biology, Medical Biochemistry and Pathology of the Faculty of Medicine at Laval University. She is also a regular researcher at the Centre for Cancer Research at Laval University, and Director of Graduate Programs in Cellular and Molecular Biology of the Faculty of Medicine at Laval University. Her research focuses on fundamental aspects of cell biology, including the molecular mechanisms that control cell division and morphological changes relevant to the development of malignant tumor cell properties. Her work has helped identify the role of small molecular chaperones from the heat shock protein family in cellular stress resistance and cytoskeletal remodeling, as well as highlighting non-apoptotic cell death processes in cancer cells.
Dr. Lavoie received the 2016 Award of Excellence from the Department of Molecular Biology, Medical Biochemistry and Pathology for her contributions to research, teaching and academic management. She has been commissioned, as an expert, to serve on numerous peer review committees of Graduate Studies Research and Training Programs.
Defining the mode of action of the HSPB8-BAG3 chaperone complex in cellular morphodynamics.
Cellular remodeling is essential during processes such as mitosis and cell differentiation. It is largely driven by assembly and disassembly of actin-based mechanosensitive structures that control cell tension. By promoting the sequestration, recycling or degradation of proteins, molecular chaperones appear essential to maintain the dynamics and integrity of the macromolecular structures that form these structures. More specifically, the chaperones of the small HSP family (HSPB), including the HSPB8-BAG3 complex, contribute to and are overactivated in malignant cells. The physiopathological relevance of the HSPB8-BAG3 complex has recently been discovered in humans by identifying mutations in BAG3 and HSPB8 that lead to rare diseases, including myofibrillar myopathy, which is characterized by the fragmentation of muscle actin fibers.
The results of this research will provide insights into relevant targets for the development of novel molecular therapies.
Identify the regulatory elements of nuclear morphodynamics in response to mechanical stress.
The formation of metastases involves the invasion of tumor cells through the tight spaces of the interstitial matrix. This process requires significant cellular deformation, which is limited by the nucleus. The nucleus is surrounded by a nuclear envelope comprising a rigid network of intermediate filaments, the lamina, which protects the genetic baggage and provides resistance to deformation. Recent advances suggest that remodeling of the nucleus architecture contributes to the migration under confinement in a three-dimensional environment and influences the stability of the genome. This remodeling, induced by mechanical forces, would be controlled via physical connections between a contractile perinuclear network formed by actin, myosin II and lamina. It would also involve changes in chromatin organization and gene expression.
The results of this research will make it possible to highlight the regulatory mechanisms exploited by tumor cells during the formation of metastases.
9, rue McMahon
3724-1
Québec, Québec
Canada G1R 2J6
- Beaudoin, ArielleMaster studentarielle.beaudoin@crchudequebec.ulaval.ca
- Duval, MatisseInternmatisse.duval.1@ulaval.camatisse.duval@crchudequebec.ulaval.ca
- Gervais, ArianneMaster studentL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16942arianne.gervais@crchudequebec.ulaval.ca
9 rue McMahon
3724
Québec, QC
Canada G1R 3S3 - Mousavi Maleki, Nafiseh SadatMaster studentL'Hôtel-Dieu de Québecnafiseh-sadat.mousavi-maleki@crchudequebec.ulaval.ca
9 rue McMahon
Québec, QC
Canada G1R 3S3
Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments
Journal ArticleJ Vis Exp, (115), 2016.
A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis
Journal ArticlePLoS Genet, 11 (10), 2015.
Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners
Book ChapterTanguay RM, Hightower LE (Ed.): The big book on small heat shock proteins, pp. 435-456, Cham, Springer International Publishing, 2015, ISBN: 9783319160764.
A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases
Journal ArticleJ Biol Chem, 289 (4), 2014.
Guidelines for the use and interpretation of assays for monitoring autophagy
Journal ArticleAutophagy, 8 (4), 2012.
Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes
Journal ArticleApoptosis, 17 (8), 2012.
Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor
Journal ArticleCell Signal, 22 (11), 2010.
Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes
Journal ArticleJ Proteome Res, 9 (2), 2010.
Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a
Journal ArticleMol Biol Cell, 20 (18), 2009.
The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells
Journal ArticleOncogene, 28 (3), 2009.
Active projects
- Regulation of nuclear dynamics by tyrosine kinase signaling, from 2022-04-01 to 2027-03-31
Recently finished projects
- TBC1D9: therapeutic target of the aggressiveness of triple negative breast cancer, from 2023-03-01 to 2024-02-29