Dr. Jean-Yves Masson is a researcher at the CHU of Quebec-Laval University Research Centre, Oncology axis, and Full Professor in the Department of Molecular Biology, Medical Biochemistry and Pathology at Laval University’s School of Medicine. He joined the CHU of Quebec following a postdoctoral fellowship in the laboratory of Stephen West a world specialist in DNA double-strand break repair by homologous recombination. Since then, he has received numerous awards, including the prestigious title of FRQS National Researcher award, and has published over 125 articles in leading scientific journals, including Nature, Nature Communications, and Molecular Cell. He is holding a FRQS Research Chair until June 2020. In parallel with his research activities, Dr. Masson was acting as fundamental research representative on the planning and coordination committee of the Cancer Research Centre/Oncology Axis in 2011 and was member of the executive committee of the Oncology axis in 2012. He also served as Director of the Department of Molecular Biology, Medical Biochemistry and Pathology from 2013 to 2017.
Dr. Masson’s team is interested in the DNA repair mechanisms that govern the maintenance of the integrity of our genome, in particular homologous recombination (HR), and related therapeutic avenues. The fundamental part of his work is mainly directed towards the in vitro reconstitution of key HR steps (resection by MRN-RPA-BLM-DNA2-EXO1 complexes and strand invasion with BRCA1-BRCA2-PALB2). Furthermore, his lab is heavily involved in the functional characterization of DNA repair genes using proven biochemical assays and innovative molecular and cellular techniques (BioID, molecular DNA combing, CRISPR-Cas9 system). With his collaborators, he discovered a negative regulation mechanism of the DNA resection step by DYNLL1. Several of the genes studied, including BRCA1, BRCA2 and PALB2, are mutated in breast and ovarian cancer and/or Fanconi anemia, a rare genetic disease characterized by a wide variety of congenital malformations and a risk of acute leukemia and cancer. The laboratory performs a precise characterization of DNA double-strand break repair genes, which is critical for understanding the etiology of these diseases. With a more translational focus, the second part of the research involves developing new synthetic lethal strategies based on the function of certain DNA repair enzymes in collaboration with Dr. Guy Poirier’s team. Its primary objective is to selectively kill breast and ovarian cancer cells using small inhibitory molecules identified by screening chemical libraries. Although PARP inhibitors have demonstrated clinical benefit in patients with germline mutation in BRCA1/2, the emergence of resistance to this type of agent highlights the importance of identifying new combinations of inhibitors. The experiments are performed on 2- and 3-dimensional (spheroids) tumor cell models and mouse models of Fanconi anemia.
Recently, Dr. Masson’s discoveries have led him to join several cancer multi-institutional teams. Among others, he is participating with Dr. Jacques Simard in the PERSPECTIVE I&I (Personalized Risk Assessment for Prevention and Early Detection of Breast Cancer: Integration and Implementation) project, an initiative funded by Genome Canada bringing together the expertise of more than 20 researchers, including several world-renowned fundamentalists, clinicians, and biostatisticians. Within this interdisciplinary group, Dr. Masson’s team is dedicated to developing systematic functional tests to reliably assess the impact of genetic variations linked to breast cancer, especially those affecting PALB2, and determine their clinical relevance for the benefit of patients. The data collected will improve the personalized risk assessment for early detection and more appropriate treatment of breast cancer. In collaboration with the CRCHUM, Dr. Masson also acts as one of the principal investigators of the ONCOPOLE project entitled “Targeting genomic instability as an essential vulnerability of ovarian cancer”, which aims to identify the best therapeutic combinations for eliminating ovarian cancer cells.
9, rue McMahon
2702-1
Québec, Québec
Canada G1R 2J6
- Atalay, NurgulDoctoral studentL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16951nurgul.atalay@crchudequebec.ulaval.ca
9 rue McMahon
2733
Québec, QC
Canada G1R 3S3 - Beneyton, AdèleDoctoral studentL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16951adele.beneyton@crchudequebec.ulaval.ca
9 rue McMahon
2709
Québec, QC
Canada G1R 3S3 - Berrada, SaraPostdoctoral fellow+1 418-525-4444
- Caron, Marie-ChristineEmployeeL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16816+1 418-691-5439marie-christine.caron@crchudequebec.ulaval.ca
9, rue McMahon
2709
Québec, Québec
Canada G1R 2J6 - Coulombe, YanEmployeeL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16816+1 418-691-5439Yan.Coulombe@crchudequebec.ulaval.ca
9, McMahon
2709
Québec, Québec
Canada G1R 2J6 - Gagné, AnaisInternanais.gagne.1@ulaval.ca
- Nonfoux, LouisMaster studentCHUL+1 418-525-4444, extension 48257 / 42296louis.nonfoux@crchudequebec.ulaval.ca
2705 Boulevard Laurier
R-2710
Québec, QC
Canada G1V 4G2 - Rodrigue, AmélieEmployeeL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16816+1 418-691-5439Amelie.Rodrigue@crchudequebec.ulaval.ca
9, McMahon
1734
Québec, Québec
Canada G1R 2J6 - Ronato, DarylDoctoral studentL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16816daryl.ronato.1@ulaval.cadaryl.ronato@crchudequebec.ulaval.ca
9, rue McMahon
2709
Québec, Québec
Canada G0A 2K0 - Thomas, MelissaPostdoctoral fellowL'Hôtel-Dieu de Québec+1 418-525-4444, extension 16951melissa.thomas@crchudequebec.ulaval.ca
9 rue McMahon
2733
Québec, QC
Canada G1R 3S3 - Valeh Sheida, SadafDoctoral studentL'Hôtel-Dieu de Québecsadaf.valeh-sheida@crchudequebec.ulaval.ca
9 rue McMahon
2733
Québec, QC
Canada G1R 3S3
RNF8 ubiquitylation of XRN2 facilitates R-loop resolution and restrains genomic instability in BRCA1 mutant cells
Journal ArticleNucleic Acids Res, 2023.
The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors
Journal ArticleNAR Cancer, 5 (3), 2023.
FIRRM cooperates with FIGNL1 to promote RAD51 disassembly during DNA repair
Journal ArticleSci Adv, 9 (32), 2023.
FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability
Journal ArticleNucleic Acids Res, 51 (17), 2023.
Cell Type Specific CAG Repeat Expansions and Toxicity of Mutant Huntingtin in Human Striatum and Cerebellum
Journal ArticlebioRxiv, 2023.
Functional and Clinical Characterization of Variants of Uncertain Significance Identifies a Hotspot for Inactivating Missense Variants in RAD51C
Journal ArticleCancer Res, 83 (15), 2023.
Variants in ATRIP are associated with breast cancer susceptibility in the Polish population and UK Biobank
Journal ArticleAm J Hum Genet, 110 (4), 2023.
PARP1 associates with R-loops to promote their resolution and genome stability
Journal ArticleNucleic Acids Res, 51 (5), 2023.
A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene
Journal ArticleNat Commun, 14 (1), 2023.
HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways
Journal ArticleJ Biol Chem, 299 (2), 2023.
Active projects
- Canada Research Chair in DNA repair and Cancer Therapeutics, from 2020-07-01 to 2027-06-30
- Decoding the DNA double-strand break repair pathways: from mechanistic insights to human genome instability diseases, from 2018-07-01 to 2025-06-30
- Investigating the Role of RECQL in Breast Cancer Susceptibility, from 2017-04-01 to 2024-03-31
- Personalized Risk Assesment for Prevention and Early Detection of Breast Cancer : Integration and Implementation (PERSPECTIVE II), from 2017-11-01 to 2024-03-31
- Poly(ADP-ribose) writers, readers, and erasers: Functions in DNA double-strand break repair and synthetic lethality, from 2019-10-01 to 2024-09-30
- Réseau de recherche sur le cancer (RRCancer), from 2023-04-01 to 2026-03-31
- Tumor biobanking was supported by the Banque de tissus et de données en cancers solides of the Réseau de recherche sur le cancer (RRCancer)...The RRCancer is funded by the Oncopole...de l'Économie, de l'Innovation et de l'Énergie du Québec., from 2023-04-01 to 2024-03-31
Recently finished projects
- Bourse de soutien aux nouveaux détenteurs de Chaire de recherche du Canada, from 2020-07-01 to 2022-06-30
- Characterization of HR-Killer1 and identification of small molecules for cancer therapy and enhanced gene editing using CRISPR/Cas9-based DNA repair strategies, from 2018-04-01 to 2023-03-31
- Cibler l’instabilité génomique en tant que vulnérabilité essentielle du cancer de l’ovaire, from 2018-10-01 to 2021-09-30
- Grand prix scientifique, from 2022-04-01 to 2023-03-31
- Infrastructure for a Tier I CRC in DNA repair and cancer therapeutics, from 2020-07-01 to 2022-12-31
- Patient stratification based on DNA repair functionality for cancer precision medicine, from 2020-01-01 to 2022-12-31
- The contribution of RAD51C and RAD51D to breast and ovarian cancer, from 2021-05-01 to 2023-04-30