Dr. Ze Zhang received his B.Eng. and M.Eng. in 1982 and 1984 from Chengdu University of Science & Technology (now Sichuan University) and then his PhD degree in Experimental Medicine from Laval University in 1993. After a postdoctoral training in Japan, he returned to Laval University in 1995 and later became a professor in the Department of Surgery of the School of Medicine, and a researcher at the CHU de Québec-Laval University Research Center Division of Regenerative Medicine. Dr. Zhang’s research has been funded by the Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de la recherche en santé du Québec (FRSQ), and industrial partners. He has more than one hundred journal publications, has edited one book, and authored several book chapters.

Dr. Zhang is interested in biomaterials, wound healing, and cardiovascular devices.

Electrical stimulation for wound healing

Electrical interactions are ubiquitous in biological systems and play pivotal roles in molecular recognition and signal transduction. In collaboration with Dr. Mahmoud Rouabhia, Dr. Zhang develops electrically conductive biomaterials and uses them as scaffold or substrate to mediate electrical stimulation to cells. The electrically activated cells are studied for their behaviors, activation mechanisms, and potential in wound healing. Research approaches include material preparation, cell culture, biological analysis, and animal experiments.

Conductive polymers

Electrically conductive polymers are useful as semi-conductors and in the energy harvesting and storage sectors. However, such polymers are usually poor in mechanical properties, processability and functionality. Dr. Zhang’s lab focusses on the nano-structured conductive polymers with improved properties and functionalities. Research approaches include polymer synthesis, surface modification, and material analysis.

Cardiovascular devices, implants, and materials

The safety and quality of cardiovascular implants such as vascular prostheses and heart valves are critical to patients. In collaboration with Drs. Yvan Douville and Robert Guidoin, Dr. Zhang has a long-term research interest in the development of new cardiovascular devices, the analysis of clinically retrieved medical explants, and the study of new materials for medical applications. Research approaches include in vitro tests, animal experiments, material analysis, and polymer synthesis.

Hôpital Saint-François d'Assise
10, rue de l'Espinay
Québec, Québec
Canada G1L 3L5
78 entries « 1 of 8 »

Liao S, He Q, Yang L, Liu S, Zhang Z, Guidoin R, Fu Q, Xie X

Toward endothelialization via vascular endothelial growth factor immobilization on cell-repelling functional polyurethanes.

Journal Article

J Biomed Mater Res B Appl Biomater, 107 (4), pp. 965-977, 2019, ISSN: 1552-4973.

Abstract | Links:

Meng S, Mao J, Rouse EN, Le-Bel G, Bourget JM, Reed RR, Philippe E, How D, Zhang Z, Germain L, Guidoin R

The Red Kangaroo pericardium as a material source for the manufacture of percutaneous heart valves.

Journal Article

Morphologie, 103 (341), pp. 37-47, 2019, ISSN: 1286-0115.

Abstract | Links:

Mao J, Rouabhia M, Zhang Z

Surface modification by assembling: a modular approach based on the match in nanostructures

Journal Article

J Mater Chem B Mater Biol Med, 7 (5), pp. 755-762, 2019, ISSN: 2050-750X.

| Links:

Lin J, Parikh N, Udgiri N, Wang S, Miller DF, Li C, Panneton J, Nutley M, Zhang Z, Huang Y, Lu J, Zhang J, Wang L, Guidoin R

Laser Fenestration of Aortic Stent-Grafts Followed by Noncompliant vs Cutting Balloon Dilation: A Scanning Electron Microscopy Study.

Journal Article

J Endovasc Ther, 25 (3), pp. 397-407, 2018, ISSN: 1526-6028.

Abstract | Links:

Mao J, Zhang Z

Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges.

Journal Article

Adv Exp Med Biol, 1078 , pp. 347-370, 2018, ISSN: 0065-2598.

Abstract | Links:

Mao J, Li C, Park HJ, Rouabhia M, Zhang Z

Conductive Polymer Waving in Liquid Nitrogen.

Journal Article

ACS Nano, 11 (10), pp. 10409-10416, 2017, ISSN: 1936-086X.

Abstract | Links:

Mao J, Wang Y, Philippe E, Cianciulli T, Vesely I, How D, Bourget JM, Germain L, Zhang Z, Guidoin R

Microstructural alterations owing to handling of bovine pericardium to manufacture bioprosthetic heart valves: A potential risk for cusp dehiscence.

Journal Article

Morphologie, 101 (333), pp. 77-87, 2017, ISSN: 1286-0115.

Abstract | Links:

Bourget JM, Zegdi R, Lin J, Wawryko P, Merhi Y, Convelbo C, Mao J, Fu Y, Xu T, Merkel NO, Wang L, Germain L, Zhang Z, Guidoin R

Correlation between structural changes and acute thrombogenicity in transcatheter pericardium valves after crimping and balloon deployment.

Journal Article

Morphologie, 101 (332), pp. 19-32, 2017, ISSN: 1286-0115.

Abstract | Links:

Wang Y, Rouabhia M, Lavertu D, Zhang Z

Pulsed electrical stimulation modulates fibroblasts' behaviour through the Smad signalling pathway.

Journal Article

J Tissue Eng Regen Med, 11 (4), pp. 1110-1121, 2017, ISSN: 1932-6254.

Abstract | Links:

Li C, Wang F, Douglas G, Zhang Z, Guidoin R, Wang L

Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft.

Journal Article

J Mech Behav Biomed Mater, 69 , pp. 39-49, 2017, ISSN: 1751-6161.

Abstract | Links:

78 entries « 1 of 8 »
Signaler des modifications

Active projects

  • Cell Response and Wound Healing Through Electrical Stimulation Mediated by Conductive Scaffold, Subvention, Instituts de recherche en santé du Canada, Volet Projet: Concours pilotes, from 2016-07-01 to 2021-06-30
  • Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), Subvention, Fonds de recherche du Québec - Nature et technologies, Regroupements stratégiques NT, from 2015-04-01 to 2021-03-31
  • Centre hospitalier universitaire de Québec - Université Laval, Subvention, Centre hospitalier universitaire de Québec - Université Laval, Centres de recherche affiliés, from 2017-01-01 to 2099-12-31
  • Flexible conductive polymer membranes, Subvention, Conseil de recherches en sciences naturelles et génie Canada, Subventions à la découverte SD (individuelles et d'équipe), from 2017-04-01 to 2022-03-31

Recently finished projects

  • Investigating the effect of electrical stimulation on foot ulcer healing, Subvention, Fondation de l'Université Laval, from 2016-04-01 to 2018-03-31
  • Plasma-assisted Laser Deposition for Advanced Surfaces and Innovative Materials, Subvention, Conseil de recherches en sciences naturelles et génie Canada, Subventions d'outils et d'instruments de recherche (OIR), from 2017-03-31 to 2018-03-31
Data provided by the Université Laval research projects registery