Development of genome editing tools for basic and therapeutic applications
Dr Doyon established his laboratory at the CHU de Québec–Laval University research center in September 2013 after a seven-year postdoctoral stint in the biotechnology sector (Sangamo Therapeutics, California, USA) devoted to the creation and implementation of genome-editing tools for basic research, agriculture, and therapeutic applications. He has acquired a unique combination of academic and industry experience, holds several patents, and has published some highly-cited scientific articles.
Genome editing
The ability to modify the genomic sequence of living cells through targeted homologous recombination has revolutionized biology. Unfortunately, the effectiveness of the conventional gene targeting tools has been limited to mice and budding yeast. However, the genomes of an ever-growing number of species have now proven amenable to manipulation using a new class of tools termed engineered nucleases (Science’s Breakthrough of the Year 2015). Specifically, three complementary classes of designer enzymes that cleave precise DNA sequences to introduce double-strand breaks (DSBs) have been described; zinc-finger nucleases (ZFNs), transcription activator–like effector nucleases (TALENs), and RNA-guided endonucleases (RGENs-CRISPR/Cas9 system). Independently of the platform, the action of engineered nucleases relies on the cell’s ability to resolve the DNA break via evolutionary conserved pathways, either by a non-templated error-prone process called non-homologous end joining (NHEJ), or using an exogenous template to repair the break by homology directed repair (HDR). Using this core technology, referred to as genome editing, it is possible to accomplish gene disruption, gene correction and targeted gene addition in cells. We aim to further improve those techniques and apply them to address fundamental aspects of the DNA damage response as they are tightly interconnected. Therefore, we study how cells respond to DSBs and choose between alternative types of repair pathways in function of the cell cycle stage, cell type, and the local chromatin architecture at the lesion. This work relies on molecular biology techniques and cell-based assays. Exploiting the novel genome editing technologies based on the use of engineered nucleases allows the elaboration of unique methods for studying DNA repair pathways, which knowledge will, in return, be valuable to implement somatic cell genetics in different species.
In vivo genome editing as a novel class of human therapeutics to treat pediatric metabolic disorders
The development of efficient gene targeting techniques for in vivo genome editing constitutes an independent but complementary research theme in our laboratory. In recent years, technological innovations have led to safe and effective delivery of genome editing reagents into tissues using Adeno-Associated Virus (AAV) vectors. Thus, in vivo genome editing can be contemplated as a potential novel class of human therapeutics that enables precise molecular modification of a genetic defect. It remains of primary importance to define the variables affecting the efficiency of genome editing in neonatal and adult mice, to maximize the therapeutic potential of this gene therapy approach. Following systemic gene delivery of CRISPR nucleases and therapeutic transgene in mice using AAV, we strive to (i) define the variables affecting the efficiency of genome editing, (ii) determine the mode of transgene integration, (iii), ascertain the specificity, and (iv) test if the approach is curative in mouse models of metabolic diseases, such as Tyrosinemia.
Given the rising number of researchers utilizing CRISPR/Cas9 systems across both basic science and biopharmaceutical research, versatile methods that drastically improve the success of genome editing experiments are of significant importance. Our work should enhance fundamental biological research and open novel avenues of treatment, through gene therapy.
2705, boulevard Laurier
T-3-67
Québec, Québec
Canada G1V 4G2
Latest news
- Conférence grand public : « Humains génétiquement modifiés », avec Yannick Doyon 2019-11-18
- Trois de nos chercheurs participent à l’émission Découverte ‘La révolution génétique’ qui sera diffusée le 3 novembre prochain 2019-11-01
- Vingt chercheurs du CRCHU reçoivent près de 9 millions de dollars de subvention des IRSC 2019-07-15
- Agudelo, Daniel StevenDoctoral studentCHUL+1 418-525-4444, extension 42296daniel-steven.agudelo@crchudequebec.ulaval.cadaniel.agudelo.1@ulaval.ca
2705, boulevard Laurier
T3-67
Québec, Québec
Canada G1V 4G2 - Boccacci, YelenaDoctoral studentCHUL+1 418-525-4444, extension 42296yelena.boccacci.1@ulaval.cayelena.boccacci@crchudequebec.ulaval.ca
2705 boulevard Laurier
T-3-67
Québec, Québec
Canada G1V 4G2 - Duringer, AlexisDoctoral studentalexis.duringer.1@ulaval.caalexis.duringer@crchudequebec.ulaval.ca
- Goupil, ClaudiaEmployeeCHUL+1 418-525-4444, extension 42296claudia.goupil@crchudequebec.ulaval.ca
2705, boulevard Laurier
T-3-74-A
Québec, Québec
Canada G1V 4G2 - Levesque, SébastienDoctoral studentsebastien.levesque.14@ulaval.casebastien.levesque@crchudequebec.ulaval.ca
- Margaillan, GuillaumePostdoctoral fellowCHUL+1 418-525-4444, extension 42296+1 418-654-2298guillaume.margaillan.1@ulaval.caguillaume.margaillan@crchudequebec.ulaval.ca
2705, boulevard Laurier
R-4720
Québec, Québec
Canada G1V 4G2 - Nourani, AnissaEmployeeL'Hôtel-Dieu de Québecanissa.nourani@crchudequebec.ulaval.ca
9, Rue Mcmahon
3734-1
Québec, QC
Canada G1R 3S3 - Rivest, Jean-FrancoisDoctoral studentjean-francois.rivest.2@ulaval.cajean-francois.rivest@crchudequebec.ulaval.ca
- Rivest, Jean-FrancoisMaster studentjean-francois.rivest.2@ulaval.cajean-francois.rivest@crchudequebec.ulaval.ca
Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9.
Journal ArticleGenome Res, 30 (1), pp. 107-117, 2020, ISSN: 1088-9051.
Rewired Cas9s with Minimal Sequence Constraints.
Journal ArticleTrends Pharmacol Sci, 41 (7), pp. 429-431, 2020, ISSN: 0165-6147.
Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6.
Journal ArticleMol Cell, 76 (6), pp. 922-937.e7, 2019, ISSN: 1097-2765.
Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins.
Journal ArticleNat Commun, 9 (1), pp. 2919, 2018, ISSN: 2041-1723.
Marker-free coselection for CRISPR-driven genome editing in human cells.
Journal ArticleNat Methods, 14 (6), pp. 615-620, 2017, ISSN: 1548-7091.
Gene Therapy in Tyrosinemia: Potential and Pitfalls.
Journal ArticleAdv Exp Med Biol, 959 , pp. 231-243, 2017, ISSN: 0065-2598.
The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation.
Journal ArticleMol Cell, 62 (3), pp. 409-421, 2016, ISSN: 1097-2765.
Preparation and Analysis of Native Chromatin-Modifying Complexes.
Journal ArticleMethods Enzymol, 573 , pp. 303-18, 2016, ISSN: 0076-6879.
A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells.
Journal ArticleCell Rep, 13 (3), pp. 621-633, 2015.
In vivo genome editing of the albumin locus as a platform for protein replacement therapy.
Journal ArticleBlood, 126 (15), pp. 1777-84, 2015, ISSN: 0006-4971.
Active projects
- Centre de recherche du CHU de Québec - Université Laval, Subvention, Centre hospitalier universitaire de Québec - Université Laval, Centres de recherche affiliés, from 2017-01-01 to 2099-12-31
- Centre de recherche sur le cancer, Subvention, Institutionnel - BDR, BDR - Centres de recherche reconnus, from 1996-05-01 to 2022-06-13
- Développement de lignées cellulaires productrices de l’antigène Spike (S) du SARS-CoV-2, Subvention, Ministère de l'Économie et de l'Innovation, from 2020-03-26 to 2021-05-03
- Orthologous CRISPR-Cas9 systems for genome editing: discovery, characterization and development for novel biotechnological applications, Subvention, Instituts de recherche en santé du Canada, Subvention Projet, from 2019-10-01 to 2024-09-30
- Principes fondamentaux et applications thérapeutiques de l'ingénierie des génomes, Subvention, Fonds de recherche du Québec - Santé, Chercheur-boursier Juniors 1 et 2, Seniors, from 2018-07-01 to 2022-06-30
- Utilisation des nouvelles technologies d'édition du génome et de séquençage pour améliorer la sécurité des transfusions sanguines, Partenariat, MITACS Inc., Accélération-Élévation, from 2019-11-01 to 2024-02-01
Recently finished projects
- Deciphering DNA repair pathways using engineered nucleases., Subvention, Conseil de recherches en sciences naturelles et génie Canada, Subventions à la découverte SD (individuelles et d'équipe), from 2014-04-01 to 2020-03-31
- Enabling Targeted Genome Editing in Hematopoietic Stem Cells to Develop Novel Classes of Human Therapeutics, Partenariat, MITACS Inc., Accélération Québec (MITACS et gouvernement provincial), from 2016-07-11 to 2020-01-28
- In vivo genome editing as a novel class of human therapeutics to treat pediatric metabolic disorders., Subvention, Instituts de recherche en santé du Canada, Subvention de fonctionnement, from 2014-07-01 to 2019-06-30