Holder of a PhD in Cellular and Molecular Biology, Dr. Josée N. Lavoie is a regular researcher at the CHU Research Centre of Quebec-Laval University, oncology axis, and Professor in the Department of Molecular Biology, Medical Biochemistry and Pathology of the Faculty of Medicine at Laval University. She is also a regular researcher at the Centre for Cancer Research at Laval University, and Director of Graduate Programs in Cellular and Molecular Biology of the Faculty of Medicine at Laval University. Her research focuses on fundamental aspects of cell biology, including the molecular mechanisms that control cell division and morphological changes relevant to the development of malignant tumor cell properties. Her work has helped identify the role of small molecular chaperones from the heat shock protein family in cellular stress resistance and cytoskeletal remodeling, as well as highlighting non-apoptotic cell death processes in cancer cells.

Dr. Lavoie received the 2016 Award of Excellence from the Department of Molecular Biology, Medical Biochemistry and Pathology for her contributions to research, teaching and academic management. She has been commissioned, as an expert, to serve on numerous peer review committees of Graduate Studies Research and Training Programs.

Defining the mode of action of the HSPB8-BAG3 chaperone complex in cellular morphodynamics.

Cellular remodeling is essential during processes such as mitosis and cell differentiation. It is largely driven by assembly and disassembly of actin-based mechanosensitive structures that control cell tension. By promoting the sequestration, recycling or degradation of proteins, molecular chaperones appear essential to maintain the dynamics and integrity of the macromolecular structures that form these structures. More specifically, the chaperones of the small HSP family (HSPB), including the HSPB8-BAG3 complex, contribute to and are overactivated in malignant cells. The physiopathological relevance of the HSPB8-BAG3 complex has recently been discovered in humans by identifying mutations in BAG3 and HSPB8 that lead to rare diseases, including myofibrillar myopathy, which is characterized by the fragmentation of muscle actin fibers.

The results of this research will provide insights into relevant targets for the development of novel molecular therapies.

Identify the regulatory elements of nuclear morphodynamics in response to mechanical stress.

The formation of metastases involves the invasion of tumor cells through the tight spaces of the interstitial matrix. This process requires significant cellular deformation, which is limited by the nucleus. The nucleus is surrounded by a nuclear envelope comprising a rigid network of intermediate filaments, the lamina, which protects the genetic baggage and provides resistance to deformation. Recent advances suggest that remodeling of the nucleus architecture contributes to the migration under confinement in a three-dimensional environment and influences the stability of the genome. This remodeling, induced by mechanical forces, would be controlled via physical connections between a contractile perinuclear network formed by actin, myosin II and lamina. It would also involve changes in chromatin organization and gene expression.

The results of this research will make it possible to highlight the regulatory mechanisms exploited by tumor cells during the formation of metastases.

L'Hôtel-Dieu de Québec
9, rue McMahon
3724-1
Québec, Québec
Canada G1R 2J6
37 entries « 2 of 4 »

Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, Ann DK, Anoopkumar-Dukie S, Aoki H, Apostolova N, Arancia G, Aris JP, Asanuma K, Asare NY, Ashida H, Askanas V, Askew DS, Auberger P, Baba M, Backues SK, Baehrecke EH, Bahr BA, Bai XY, Bailly Y, Baiocchi R, Baldini G, Balduini W, Ballabio A, Bamber BA, Bampton ET, Banhegyi G, Bartholomew CR, Bassham DC, Bast RC Jr, Batoko H, Bay BH, Beau I, Bechet DM, Begley TJ, Behl C, Behrends C, Bekri S, Bellaire B, Bendall LJ, Benetti L, Berliocchi L, Bernardi H, Bernassola F, Besteiro S, Bhatia-Kissova I, Bi X, Biard-Piechaczyk M, Blum JS, Boise LH, Bonaldo P, Boone DL, Bornhauser BC, Bortoluci KR, Bossis I, Bost F, Bourquin JP, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady NR, Brancolini C, Brech A, Brenman JE, Brennand A, Bresnick EH, Brest P, Bridges D, Bristol ML, Brookes PS, Brown EJ, Brumell JH, Brunetti-Pierri N, Brunk UT, Bulman DE, Bultman SJ, Bultynck G, Burbulla LF, Bursch W, Butchar JP, Buzgariu W, Bydlowski SP, Cadwell K, Cahova M, Cai D, Cai J, Cai Q, Calabretta B, Calvo-Garrido J, Camougrand N, Campanella M, Campos-Salinas J, Candi E, Cao L, Caplan AB, Carding SR, Cardoso SM, Carew JS, Carlin CR, Carmignac V, Carneiro LA, Carra S, Caruso RA, Casari G, Casas C, Castino R, Cebollero E, Cecconi F, Celli J, Chaachouay H, Chae HJ, Chai CY, Chan DC, Chan EY, Chang RC, Che CM, Chen CC, Chen GC, Chen GQ, Chen M, Chen Q, Chen SS, Chen W, Chen X, Chen YG, Chen Y, Chen YJ, Chen Z, Cheng A, Cheng CH, Cheng Y, Cheong H, Cheong JH, Cherry S, Chess-Williams R, Cheung ZH, Chevet E, Chiang HL, Chiarelli R, Chiba T, Chin LS, Chiou SH, Chisari FV, Cho CH, Cho DH, Choi AM, Choi D, Choi KS, Choi ME, Chouaib S, Choubey D, Choubey V, Chu CT, Chuang TH, Chueh SH, Chun T, Chwae YJ, Chye ML, Ciarcia R, Ciriolo MR, Clague MJ, Clark RS, Clarke PG, Clarke R, Codogno P, Coller HA, Colombo MI, Comincini S, Condello M, Condorelli F, Cookson MR, Coombs GH, Coppens I, Corbalan R, Cossart P, Costelli P

Guidelines for the use and interpretation of assays for monitoring autophagy.

Journal Article

Autophagy, 8 (4), pp. 445-544, 2012, ISSN: 1554-8627.

Abstract | Links:

Lavoie JN, Landry MC, Faure RL, Champagne C

Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor.

Journal Article

Cell Signal, 22 (11), pp. 1604-14, 2010, ISSN: 0898-6568.

Abstract | Links:

Bilodeau N, Fiset A, Boulanger MC, Bhardwaj S, Winstall E, Lavoie JN, Faure RL

Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes.

Journal Article

J Proteome Res, 9 (2), pp. 708-17, 2010, ISSN: 1535-3893.

Abstract | Links:

Landry MC, Sicotte A, Champagne C, Lavoie JN

Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a.

Journal Article

Mol Biol Cell, 20 (18), pp. 4091-106, 2009, ISSN: 1059-1524.

Abstract | Links:

Li S, Szymborski A, Miron MJ, Marcellus R, Binda O, Lavoie JN, Branton PE

The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells.

Journal Article

Oncogene, 28 (3), pp. 390-400, 2009, ISSN: 0950-9232.

Abstract | Links:

Smadja-Lamere N, Boulanger MC, Champagne C, Branton PE, Lavoie JN

JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4.

Journal Article

J Biol Chem, 283 (49), pp. 34352-64, 2008, ISSN: 0021-9258.

Abstract | Links:

Landry MC, Robert A, Lavoie JN

[Alternative cell death pathways: lessons learned from a viral protein]

Journal Article

Bull Cancer, 93 (9), pp. 921-30, 2006, ISSN: 0007-4551.

Abstract | Links:

Robert A, Smadja-Lamere N, Landry MC, Champagne C, Petrie R, Lamarche-Vane N, Hosoya H, Lavoie JN

Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly.

Journal Article

Mol Biol Cell, 17 (7), pp. 3329-44, 2006, ISSN: 1059-1524.

Abstract | Links:

Bilodeau N, Fiset A, Poirier GG, Fortier S, Gingras MC, Lavoie JN, Faure RL

Insulin-dependent phosphorylation of DPP IV in liver. Evidence for a role of compartmentalized c-Src.

Journal Article

FEBS J, 273 (5), pp. 992-1003, 2006, ISSN: 1742-464X.

Abstract | Links:

Miron MJ, Gallouzi IE, Lavoie JN, Branton PE

Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death.

Journal Article

Oncogene, 23 (45), pp. 7458-68, 2004, ISSN: 0950-9232.

Abstract | Links:

37 entries « 2 of 4 »
Signaler des ajouts ou des modifications