Dr. Frédéric Bretzner is a FRQS researcher in the neuroscience group of the CHU de Quebec and an associate professor in the Department of Psychiatry and Neurosciences of the Faculty of Medicine at the Université Laval. Since his appointment at Université Laval in 2012, he has pursued his research on the neural control of movement in physiological conditions with the long-term goal of promoting functional locomotor recovery in neuropathological settings affecting gait, such as spinal cord injury and Parkinson’s disease. As principal investigator, he has obtained funding from national agencies such as the NSERC, CIHR, CFI, and Parkinson Society of Canada, as well as international foundations such as the International Foundation for Research in Paraplegia and Wings for Life. He is the recipient of the 2013 Barbara Turnbull Award on spinal cord injury and two FRQS scholarships in 2012 and 2016. His team is currently composed of four PhD students, one MSc student, and one postdoctoral fellow researcher.

Control and plasticity of motor circuits in physiological and pathological settings

Combining optogenetic, electrophysiological, kinematic, and neuroanatomical techniques in transgenic mice, Dr. Bretzner has previously genetically identified a reticulospinal population of the brainstem important to motor control. His team has furthered this research by identifying and characterizing supraspinal locomotor centers important in initiating, modulating and stopping locomotion in physiological conditions. The team is currently manipulating these neuronal populations to promote functional locomotor recovery in experimental models of spinal cord injury and Parkinson’s disease.

Development of motor circuits

Using a mutant mouse model, Dr. Bretzner’s team has previously shown that DSCAM, a cell adherence molecule, is important in the development of neural circuits. Although DSCAM mutation does not induce motor rigidity or spasticity, it impairs posture and the repertoire of locomotor gaits (walking versus running gaits). Using spinal cords isolated from neonatal mutant mice, his team recently revealed that DSCAM contributes to the normal establishment of spinal locomotor and sensorimotor circuits. A better understanding of neural mechanisms underlying motor functions will allow us to identify new therapeutic targets to promote motor and locomotor recovery in pathological settings.

CHUL
2705, boulevard Laurier
P-0-9800
Québec, Québec
Canada G1V 4G2

Latest news

Data not available

25 entries « 1 of 5 »

Mdzomba JB, Jordi N, Rodriguez L, Joly S, Bretzner F, Pernet V

Nogo-A inactivation improves visual plasticity and recovery after retinal injury.

Journal Article

Cell Death Dis, 9 (7), pp. 727, 2018.

Abstract | Links:

Jeffrey-Gauthier R, Josset N, Bretzner F, Leblond H

Facilitation of Locomotor Spinal Networks Activity by Buspirone after a Complete Spinal Cord Lesion in Mice.

Journal Article

J Neurotrauma, 2018, ISSN: 0897-7151.

Abstract | Links:

Laflamme OD, Lemieux M, Thiry L, Bretzner F

DSCAM Mutation Impairs Motor Cortex Network Dynamic and Voluntary Motor Functions.

Journal Article

Cereb Cortex, 2018, ISSN: 1047-3211.

Abstract | Links:

Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F

Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse.

Journal Article

Curr Biol, 28 (6), pp. 884-901.e3, 2018, ISSN: 0960-9822.

Abstract | Links:

Thiry L, Lemieux M, Bretzner F

Age- and speed-dependent modulation of gaits in DSCAM2J mutant mice.

Journal Article

J Neurophysiol, 119 (2), pp. 723-737, 2018, ISSN: 0022-3077.

Abstract | Links:

25 entries « 1 of 5 »

Active projects

  • Centre hospitalier universitaire de Québec - CHU de Québec-Université Laval, Subvention, Centre hospitalier universitaire de Québec - Université Laval, Centres de recherche affiliés, from 2017-01-01 to 2099-12-31
  • Centre thématique de recherche en neurosciences, Subvention, Institutionnel - BDR, BDR - Centres de recherche reconnus, from 1999-06-01 to 2020-10-18
  • Contribution of the Mesencephalic Locomotor Rgion to functional locomotor recovery after incomplete Spinal Cord Injury, Subvention, Wings for Life Spinal Cord Research Foundation, Research Grant, from 2015-09-01 to 2018-08-31
  • Neonatal stress and the neuroendocrine basis for sex-specific panic-related respiratory disorder in rat., Subvention, Instituts de recherche en santé du Canada, Subvention de fonctionnement, from 2014-04-01 to 2019-03-31
  • Plasticité et développement du contrôle moteur., Subvention, Fonds de recherche du Québec - Santé, Chercheur-boursier Juniors 1 et 2, Seniors, from 2016-07-01 to 2020-06-30
  • Role of DSCAM in the development of motor circuits, Subvention, Conseil de recherches en sciences naturelles et génie Canada, Subventions à la découverte SD (individuelles et d'équipe), from 2018-04-01 to 2023-03-31

Recently finished projects

  • Développement et Plasticité des Systèmes Moteurs Supraspinaux et Spinaux, Subvention, Fonds de recherche du Québec - Santé, Chercheur-boursier Juniors 1 et 2, Seniors, from 2012-07-01 to 2016-06-30
  • Motor control: Brainstem control of locomotion, Subvention, Instituts de recherche en santé du Canada, Subvention de fonctionnement, from 2013-01-01 to 2018-03-31
  • Optimization of the deep brain stimulation site in the pedonculopontin nucleus to promote postural and locomotor recovery in Parkinson's disease., Subvention, Société Parkinson Canada, Bourse pour nouveaux chercheurs, from 2015-10-01 to 2017-09-30
  • Role of DSCAM in the development of supraspinal and spinal motor networks, Subvention, Conseil de recherches en sciences naturelles et génie Canada, Subventions à la découverte SD (individuelles et d'équipe), from 2012-04-01 to 2018-03-31
Data provided by the Université Laval research projects registery